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THE NONSTATIONARY IDEAL ON N

BY
MOTI GITIK

ABSTRACT
We construct a model in which the filter of w-closed unbounded subsets of N, is
precipitous and a model in which the filter of closed unbounded subsets of N, is
precipitous. For the first model we need a measurable cardinal, and for the
second a measurable cardinal of order 2. Both resuits are equiconsistent.

Let I be a nontrivial x-complete ideal over some uncountable cardinal «.
Define R(I) to be the notion of forcing with I-positive subsets of x as
conditions. For X, Y &€ R(I), X is stronger than Y if (X -Y)EL

Jech and Prikry introduced the notion of precipitous ideal. I is precipitous iff
k Fray V*/G is well founded, where G is the canonical name of a generic
ultrafilter.

If % is the dual filter of I let us say that % is precipitous if I is such and denote
by R(%) the forcing notion R(I).

Jech, Magidor, Mitchell and Prikry 7] proved that the following is equiconsis-
tent:

(1) There is a measurable cardinal.

(2) There is a precipitous ideal on N;.

(3) NS, (the nonstationary ideal on N,) is precipitous.

The idea for making NSy, precipitous was to collapse a measurable cardinal to
N, by the Levy collapse and then iterate the forcing for adding closed unbounded
subsets of N,. This construction can be extended to obtain a model in which the
filter of w-closed unbounded subsets of N, is precipitous Already for getting a
normal precipitous filter D on N:s.t. {8 <N.|cf 8 = N} € D some new approach
is needed. S. Shelah, by revised countable support (RCS) iteration of a variant of

Namba forcing below a measurable, built such a filter.
We are producing a model in which the filter of w-closed unbounded subsets
of N, is precipitous and a model in which NS,, is precipitous. For the first model
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we need a measurable cardinal, and for the second a measurable cardinal of
order 2 (i.e. a normal measure which is concentrated on measurable cardinals).
Both results are equiconsistent.

We don’t know whether NS, can be precipitous for k > N- or even if the ideal
of w-closed subsets of N3 can be precipitous.

Our work was inspired by Shelah’s solution of Friedman’s Problem. We are
grateful to Saharon Shelah for explaining to us his proof and to Menachem
Magidor for the helpful discussions we had on the subject.

Partl. The Filter of w-Closed Unbounded Subsets of N

In this part we prove the following:

THEOREM 1. If “ZFC + there is a measurable cardinal” is consistent then so is
“ZFC + the filter of w-closed unbounded subsets of N, is precipitous”.

We start with a model of ZFC + G.C.H. and a measurable cardinal «. Let V
denote our ground model. Let U be a normal «-complete ultrafilter over x and
j: V= V*/U be the elementary embedding defined by 4. We shall identify the
ultrapower V* /% with its transitive collapse N.

1. The diamond over «

We need the special kind of diamond over « in V. It is O, =(S, ’a € B),
B¢& U, every o € B is weakly compact and the following holds:

(*) for every A C x and

IT;-sentence () if

(V.,E,A)=(A) then {a EB|ANa =85, and (V., €, S.)F ¢(S.)}
is stationary.

Such a kind of © was used by S. Shelah in his paper [12] but for ITj-sentences.

We shall present here a well known construction of such kinds of diamond
over a measurable.

First let us define it on all weakly compact cardinals below «. The definition is
by induction. Suppose (S, | v < ) is built. Let a be the least weakly compact
cardinal = B. Now, if there is a set A Ca and Il;-sentence ¢(-) so that
(Va, E,AVEp(A)and {v < «a I ANv=Ss, and(V,, E,8S.)E= ¢(S,)} is nonstatio-
nary, then let S, be some such A. Otherwise let S. ={—1}.
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ProrosiTioON 1.1.  Such defined (S. ] a < k and o is weakly compact) satisfies
().

PROOF. Suppose not. Then there are A C k and Ili-sentence ¢(-) so that
(Vo €E,AYE@(A) but {a <k|ANa =S8, and (V..€,S.)F ¢(S.)} is non-
stationary.

Now look in N. Since V., A €N, §, cannot be {—1}. So S, is equal to some
such A. Then

JLA)Nk=A =8, and (V.,E,S)F ¢(S).
Hence

{a<k|ANa=S, and(V..€,5)F ¢(S.)} €U
and so it is stationary in V. Hence it is stationary also in N, which is impossible. ]

Note that it follows from the proof that in N, S, ={—1}. So for a set of a’s in
A, S. ={—1}. Let us define B to be the set of all weakly compact 8 < k so that
Se C B

2. The preparation forcing

The property of a set A to be positive in a We,-weakly compact filter over x
(i.e. the filter gencrated by the sets

{a <k (V. €. RNV.)Eo(RNV.)}

for some R C V, and Il;-sentence ¢ s.t. (V,, €, R)E ¢(R)), see [8], can be
expressed as

c(A)o[VRCkVn Ew(X (R, n)—Ja limita €A
((VmEvR N ‘/ar>F XII(R N a, n)))]

where Xi(-,-) is the universal IT;-formula, so that for any IT\-formula ¢(-),
there is an integer n so that for any limit & and R C V,,

(Vo E,R)E @(R) iff (V., €, RYE= X (R, n).

See Levy [10] or Devlin [4].

It follows that ¢ is a Il;-sentence.

So for many a’s S, is positive in Wc¢,.

Let us define a revised countable support iteration Q =(P, Q Ii < k),
| P, | < Ni... We refer to [12], [13] or [14] for the definitions and the motivations.
Q, for i <k, is defined as follows. We consider three cases.
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Case 1. i is not a strongly inaccessible cardinal. Set Q; to be the Levy
collapse of 2% to N..

Case 2. (i is a strongly inaccessible and i B), or (i € B and (S; is not
positive in Wc¢,, or for some o €8, a is not an inaccessible cardinal, or
S; N B =), where B is the set on which <& works.

Let then O, be the variant of Namba forcing for changing the cofinality of both
i and i" to Ny. In our case, after we forced with P, i became N- and i " = N.. Let
us denote this forcing by Nmy, «,. It will be the set {T [ T is a subtree of ““Ns, so
that above each n € T there are v\, v, € T so that |[Sucrv,| = Rs, |Sucrv, | =N,
and Sucrvi CNo}). For T, T- € Nmy, ., we say T, is stronger than T if T, is a
subtree of T-.

Case 3. i€ B, S ispositive in We,, S, N B =J and, for every @ € S, « is an
inaccessible cardinal in V.

Let then O, = P*[S;] where P*[S;] will be the set of all w-closed subsets ¢ of
S: so that for every limit point 8 of ¢, ¢ N B intersects with every closed
unbounded subset of 8, which belongs to V[Ps], where following Shelah, we
denote by P a generic subset of P. The ordering on P*[S;] is defined as follows:
¢, Z ¢ if ¢, is an end extension of c¢..

Let P. = R lim Q.

Let us show that Nmj;+ and P*[S,] satisfy some nice properties. Then we shall
apply [14] and [5] to obtain that

(a) P. does not add new subsets of w,

(b) for every strongly inaccessible i, P, satisfies i-c.c.

First let us consider Nmg,«,.

LEMMA 2.1, Nmy,, satisfies the S-condition for any S s.t. {R,,R:} C S.

Proor. Let us define the function F. For a point n where we are using F to
determine Suc(n). I, and f(n') for any immediate successor n' of 7, f(n) is
already known and it is a condition in Nmy, «,. Also we know for which ! < n and
k < height of n, [k belongs to the [th front. If there is the maximal k <
height 7 such that n | k belongs to some front, let the index of this front be L.

If there is such [, and [, is an even number, or for any k < height of n n [k
does not belong to a front, then let us find a point v, of minimal height in f(n)
such  that  Suc/(v,)CN. and  |Sucim(v,)|=N.. Let Sucr(n) be
{n"(@)| v (@) Ef()}. and I, be {A CSucr(n)||A|<N:} and for each
1 "{a) in Sucr(n) let f(n "(a)) be the subtree of f(n) which is defined by v, ).
If I, is odd then take », to be a point of minimal height in f(n) s.t.
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| Sucsmy(vn)| = Ns. Let us define Sucr(n), f(n "(a)) as above, and let In be
{A CSucr(n)||A| <N}

The proof that such a defined strategy F works is the same as in usual Nm'
forcing; see [13] or [14].

Now suppose that on a step i we force with P*[S,]. Then i € B, S; is positive in
the weakly compact filter on i, and for every a € §; D5, cf & =N

Applying the induction to P; (i is in B and so it is weakly compact) we obtain
that P; satisfies i-c.c., it does not add reals, and i = NP,
The following lemma is proved in [5}]:

LEMMA 2.2. P*[S:] satisfies the strong l-condition for a set | of monotone
families so that NSy, [ S: €1, where NS,.,[ Si ={A CN:
subset of N.}.

A N S;is a nonstationary

By [13], the I-condition and CH implies that P*[S;] does not add reals. Let us
show that P*[S;] as the usual forcing for adding closed unbounded subsets does
not add new functions from » into On.

LEmMA 2.3.  Every function f € V[P,.,] from w into V[P,] belongs to V[P,].

PROOF. Since | P*[S;]| =N, in V[P], it is enough to show that there is no
such new f from w into i = Ny
Now i € B and so it is weakly compact. Hence the set

C={a<i|(V,E P NV,S NafnV.)<(V,EP,S,D}

contains a club, where f is a name of f in the forcing P, * P*{S;].

Let « €SN C and S N« is stationary. Then a is an inaccessible. Hence
V. NP, =P, and P, satisfies a-c.c. Let V,[P,] be K% (V.) (the interpretation
of all the names which belong to V.). Note that if a € V, then Ky (a) = Kp, for
some B < a since P, satisfies a-c.c. So for every a € V., Ks (a)= K (a).
Hence

(V.[B.],E,P., S, N, iN VL [B.]) < (Vi[P], €, P, S, D),

where f is the interpretation of f in Vi[B], i.e. K%(f).

In V[Io’,,+1], cfa =cfa”™ =N, so we have a sequence (C, | n < w) such that

(a) C. € Vanditis aclubin a in V[P.] (orin V; it does not matter since P,
satisfies a-c.c.),

(®) C...CC,,

(c) for every closed unbounded subset of a, C € V[P, ], there is some n so
that C, CC.
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We take qo € V[P.] to be some P*[S;]-condition s.t.

Let qo = qoU{as}, where ay € C,N S, — qo. Find q, € V[P.] s.t. ;= q and
a [1(D).
And so on.

Let g = U g. U{a}. Then q € P*[S.] and it forces that f€ V[P].

3. The idea

Let AC(k—B)N{a<«k | « is a strongly inaccessible cardinal} and it belongs
to AU, where B is from section 1. Then A is Wcy-positive, and Ao =
{¢ €EB|ANa=S§, and S, is Wc,-positive} is a stationary subset of . So for
every a € A, we forced with P*[S.]. Hence in V[E.], {a <« =N3’cfa =N,
and A N « contains an w-closed unbounded subset of a} D Ac and A, remains
stationary in V[P, ]since P, satisfies «-c.c. This is enough for shooting an w-club
through every A € U, without collapsing any cardinal. See [1]. The problem
arises when we try to iterate such forcing.

In our case we don’t need to be worried about every new subset of N.. The
precipitousness will be preserved if we add to the filter (generated by %) some
special sets. Let us explain it more precisely. Let A € U be as before. We force
in V[P.] with usual P[A]={f € V[P.]|f is an w-closed subset of A}. Let us
define the extension U, of U (in V[P, * P[A]) as follows:

E € U, iff there is (p,q) € P, * P[A] so that in the ultrapower N, p I, (for
all C'C P[A] which is generic over N[P,] and q € €', U C'U{k}Fpayk €
J(E)).

The direct way now is to shoot new w-clubs through every E € U,. But it is
not clear why such forcing does not collapse N..

Let us do something’ different from the direct shooting w-clubs through
elements of 9.

Suppose that E € U, then theset E'={a €A [p e (forall C'C P[A Na]
which is generic over V[P,] and q € C’

U C’ ) {C!} "'P[Aa] a € E})

belongs to .

Let G be a (V[P,], P[A])-generic (we shall denote in such a way that
G C P[A] and it is a generic over V[P,]). We shall not distinguish between G
and U G which is the w-closed subset of A.
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Let A'={a €A |G Na is a (V[P,],P[A Na]) generic}. It is clear that
A'NE'CE. E'€9% so we can shoot an w-club through it without problems.
Now if we succeed in doing this also with A’, then E will contain an w-club.

For such special sets A’ we are ready to iterate our forcing. Let us define two
such steps forcing and show that it does not collapse N..

So let A € U be as above. Let us define in V[P, ] the forcing notion P[A]
for shooting two w-clubs, one through A and the second, which will be a subset
of the first one, through the “*generic points™ of A.

P[A] will be a set of all pairs {co, ¢,) so that ¢, ¢, are w-closed subsets of A,
coD ¢, and for every B Eci, coN B is a (V[Ps]. P[A N B))-generic.

Let us show that this forcing does not collapse cardinals.

PROPOSITION 3.1.  The forcing P’[A] does not add new functions from 8"

into V|[P.].

ProOF. Let AV ={a €A |AsNa is a stationary subset of a}. Then A" €
U since Ao is a stationary subset of x in V and so also in N.

Now, as above, for every « € A" the forcing P[A Na]in V[P,] does not
collapse any cardinals. And more than that, we can find a generic subset of
P[A Na] already in V[P,.]. Since at the step a we forced with Nm/.,-, so
cfa =cf(a”)=Nysin V]P,,,]. Hence the set @ of all dense subsets of P[A N a]
which belongs to V[P.] is of cardinality «" in V[B.]. So in V[P,.,] @ =
U.<o @., where each @, € V[P, ] and it is of cardinality N, in V[P, ]. Asin [3],
by going through elementary submodels one can build a sequence {(g. | n < w) of
elements of P[A N a] so that g... = g, and for every T € 9,, g. is stronger than
some element of T.

VP VIP]
1 2 .

Now suppose that f is a P*’[A]-name of a function from 8"/ into N

As before, let us denote
A9 ={a EB|A"Na =8, and S, is Wc, -positive}.

It is a stationary subset of «.

Let C be a club from Lemma 2.3 of elementary submodels of
(Vo €, P, A, A,

Let «a €AY NC As in Lemma 2.3 then

(Vu[P.].E,P., A Na, S, EN V.[P.]) <(V.[B.],E, P, A AV .

Note that since « is an inaccessible, it is a limit point of C since we can
consider elementary submodels of (V,,&E,P,, A Na, S,., N V,).
We forced with P*[S, ] on step a. So let G, be a generic subset of P*[S, ] and



264 M. GITIK Isr. J. Math.

belonging to V[P...]. The cofinality of & in V[P,..] is 8, (by Lemma 2.3). Let
E =U G, N C Then it is a closed unbounded subset of a. Fix some increasing
v < cfyP-1)) of it. Since every member of S, is an
inaccessible cardinal in V, we can apply to it the argument from Lemma 2.3 and
obtain that

continuous enumeration {u,

N, =(V.[P.].€. Pe. AN Su N £0 V[BL])
<(V.[P.],E,P., A N, S, iN V[B,]).

Since E is a club in « it implies that the last model is the union of the elementary
chain (N, | v < cf a e,

Now let us define in V[P,.,] a sequence {(g.

() ¢. € PTA N w]N V[P, ],

(i1) g. ={co. €1,) and maxc, = u, for i =0,1,

(iii) q..: decides f(v),

(iv) q.+1Zq..

Since every w. belongs to A, as we explained above, we can define g, on
nonlimit stage v. Inside N, ., find some ¢, = ¢, which decides f(v) and let g,., be
an element stronger than g, which satisfies (ii).

v < N;) so that

For limit v let g, ={co.. c1,) where ¢, = U, o, ¢, U{w.} for i =0,1.

Let us prove that g, € P’[A]. Note that it is enough, since the sequence
(m. | v' < v) is a countable subset of w,,
add reals the forcing P./P, ., does not add new w-sequences to wu.. Hence
(o | v’ <vyE V[P, 1]

Let us prove that ¢y, N p, isa(V[P,., ], P[A N w.])-generic. Solet D € V[P, ]
be a dense subset of P[A N w.]. Note that P[A N u,]C V.. [P..]. So let D be a
name of D which is a subset of V. Now let us consider

o |V ) =N, and since P, does not

R={a<pm [{(Vo,E P, ANaDNV,)<(V,,E P., ANpu,D}

Then R is a closed unbounded subset of u. in V, since u, is an inaccessible
there. ’

Remember that g, is a limit point of U G, (a generic subset of P*[S.]), so
(U G.)N . intersects every closed unbounded subset of w. in V[P, ]. Hence
there is u € U G. N, N(CNR) (. is also a limit point of C,so C Ny, is a
club in V). Then

(Vu[P.}.€,P,ANu, DNV, [PD<(V,.[P.].E P., A Np,D)

and so D N V,[P.]is a dense subset of P[A N ). Now p = ., for some », < ¥
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and ¢, € PlA Nul, q,={co,c1,) and maxc,, =pu for i =0,1, so co, is
stronger than some element of D N V, [P,]. But ¢ = co., hence ¢, also is
stronger than some element of D.

So we proved that co, N, is a (V[P,], P[A N w.])-generic. It implies that
q. € PY[A]. O

Let A¥={a €AY I AS N a is a stationary subset of a}. Then A® € U and
using the ideas from Proposition 3.1, we can show that for every a € A® the
forcing P[A Na] in V[P.] does not collapse any cardinals and in V[P, ]
there is a (V[P.], P’[A N a])-generic set.

Let PP[A]={{co, C1,C2) | co, €1, 2 aTe w-closed subsets of A, co D ¢; D ¢, for
every B € ¢y, (coN B, ciN B is a (V[Ps], PV[A])-generic}.

In the same way we define A™ and P™[A] for n <w. Let A’ =[),.,A™
and P“’[A] be the set of all sequences {cq, ..., Cn,... ’ n < w) so that for every n,
(Coy...,Cr) E P™'[A]. Now why does P“’[A] not collapse cardinals? The idea is
as in Proposition 3.1. Instead of A“ we take

AV =df(A“) ={a € A“| AL’ N a is stationary}.

Also we prove that for every a« € A“’ there is (¢, | n < w) € P“’[A] so that for
every n, U ¢, = a and (co, . .., ¢.) is (V[P.], P*[A])-generic. We shall not give
the proof here. It will be done in the next section in a general situation.

It is possible to continue and define A’ and P“’[A] for every a < . For
of cofinality « the definition of A uses a diagonal intersection. It can be done
in such a way that P‘“[A] satisfies k"-c.c., namely let P’[A]=U,.,P®[A]
for a of cofinality k. We define P“"[A]= U...- P“[A]. Also P*“"[A] will
satisfy « *-c.c. and will not collapse cardinals. Now every new set, which must be
included into the filter generated by %, appears at some stage a < . Already at
the next stage « + 1, after we force with P ""[A ] it will contain some set A, € U
intersected with an w-closed unbounded set.

This is the idea. In the next section we shall define and force with this kind of
forcing but at the same time for every A € U

4. The main forcing

Fix some enumeration of the set {A € U |A Ck—Bandeverya €A is an
inaccessible} by nonlimit ordinals (A, ., ' v < k). For a limit v let us define an
element A, of 4 in a special way.

First let us define A, for limit » <«. Let A, = [1,., A,. Now let A, = A?,
where as in Section 3 for A in U we denote by A" the set of all @ € A so that
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Ao N« isstationary in a (i.e., A is guessed below a stationary many times), and
A(Z) — (A(l))“).

For v, k" > v = k, we shall build some diagonal intersection. First, fix for
T <cf v), so that if
thereis u <w, u limitand v = u + w, thenlet vo=pu and v, = u + n for n < w,
otherwise every v, is a limit ordinal.

Now we define A, = MN,cw. A, ifcfv <k and A, =/\,., A, ={B <« IVT <
B,BEA,}if cfv=xk Asabove let A, =A%,

For a <« let us fix some i, : k = a so that

(i) if a <k, i,(B)=p, for B <a and i, (B) =0, otherwise;

(i) if & =k, i, is the identity function:

every v =« a cofinal increasing continuous sequence (v,

(iii) if k <a <«', i, is a 1-1 mapping from k onto a.

For a < k" let us define a closed unbounded subset of «, C,, so that its
elements will be closed enough under i.. Let C, =k —« for @ <« and C, = «.
For a > « let us consider first the structure

d!(,ll = (a, e« iug K7 R“\ <a-r

7{(cfa), R)),

where

Ry= {<6» T, 57>

8 <a,7m<kand(9, LT < k) is the picked cofinal sequence to 8},
R, ={{8, 1) l d<a,7r<kandis(t)=pu}).

Let now W < o, and | W|< k. Suppose also that W N « is some ordinal 8.
Then W is  equal to . =a(idB)LE LB RIB, (a|7<
min(cfa, B)), Ri[B), RulB =uf(8,7,8,) ée ixB), <P and 4, is from
(6, |7 <ctd), RilB =ul(8,7,u)| 8 EiUB), 7<B and is(r) = p}.

Since « is an inaccessible, C, ={B < « |&¢B,a < ...} contains a club. Let y be
the least ordinal s.t. y = cfYa and cf """ Xa ) = cf "o if cf @ < k and 0if cf a = «.

Now put C, ={B <« |[3 >y and B is a limit point of C.}. Note that every
inaccessible cardinal 8 > vy in C, is a limit of C, point and so belongs to C,.

LemMma 4.1. Let k = a;<a,, B <k be so that B € C,, and a, € i’ (B), then
B €C.,.

PrOOF. It is enough to show that o, < A..,. But since a, Ei (B), I, | B 1S
definable in ;.. For a formula ¢(r,...,7.) where 7,...,7. €Ei,(8) let

¢'“#(ry,...,7.) be the formula obtained from ¢ by the restriction of all the
quantifiers to i%(8) (i.e. for AxVY, Ax¥)«? is Ix € i’ (BY¥'~*’ and so on).

Then ﬂg.m#([)(fh...,‘ﬂ.)
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iff Apo @ BT, T0)
iff Ao E QN (Thse oy Tn)
ift A E@(T1n. ., Tn)

LEmMMA 4.2, Let k =a = a,, B <« be so that B € C,, and o, € i/ (B) then
BeC,.

Proor. By the definition of C,,, it is enough to show that B is a limit point of
C... Now, since 8 is a limit point of C., and a, € i%(B), there are unboundedly
many in 8,8 € C,, s.t. @ €i(8). By Lemma 4.1, every such & belongs to C,,
and, also, 8 € C,,. Hence B is a limit point of C,,. 0

MaIN DEFINITION.  For » <k we define in V[P,] by induction the forcing
notion Q, and the ordering <, on it as follows:
a €1%(B,)}, where B, is some

An element g € Q, is a sequence {(e,q.)
element of C,, so that:

(1) For every a €i}(B,), . is an w-closed subset of A, of cardinality less
than N,.

(2) For every limit a €i%(B;), q. is a subset of C, and, if B € q., then
iBYCi'UBy), B Eq. for every 1 €i(B) and

g Na, B =a{{r,q. N B)| T €iL(B)

is a (V[Ps], Q. | B)-generic, where Q, 1B =u{p € Q. N V[P] | B, < B and for
every T €i4(B,), p- is bounded in B}.

For p,q € Q. we define p =, q (p is stronger than q) if 8, = B, and for every
a €i%B,), . i1s an end extension of g,.

REMARK. (i) For a, B asin (2)if @ = « then a € i’(B,) implies by Lemma 4.2
Bq € C.. Since i, is a 1-1 function iYB)LiAB)=iUB,)Na if B> B, So
Bs = B. idB,) C i'ABy) N e, since by the definition of A, .. i%(B,) is closed under
Io | Bg. Now, for every 7, €i(B,)Na there is 7.< B, s.t. 7, =i.(7.), since
g, < A... Hence i(By)=i"YB,)N a.

(i) Q.18 can be defined inside V[P;]. Hence Q, | B € V[P].

vIE )

(iii) For every », |Q,|=k =N

DerinrTion 4.3, Let Q.- =U,..~Q, and for p.q € Q. let p=gq if for
every a s.t. ¢. is defined and is not the empty set, p. is an end extension of it.

We would like to show that for every v <« ", Q, < Q,-, i.e., every maximal



268 M. GITIK Isr. J. Math.

antichain of Q, is a maximal antichain of Q (hence compatibility is preserved). It
is clear that if p =,q then p Zq.
LeEMMA 4.4. p, € Q, (i €2) are incompatible in Q.+ iff for some a € i5(B,,) N

-1

i%(By,), for every i, j E2, i# ], p.. is not an end extension of p;.

Proor. (1) & By Definition 4.3.

(2) = Suppose that for every @ € i,,(8,,) N i",(B,,), p., is an end extension of p;,
for some i# j, i, j €2. Let v1 = v,. We define p' = {{a,pu) | @ € i/,(B)}, where B is
some element of C,,—(B,, U B,,) so that v; €Ei'(B), pa= P if a €1'(B,,) and
p.=O otherwise. Note that such defined p'€ Q,, and p'=, p,. Let p"=
{(a,piﬁ)]a €i’(B)}, where pi=p. if a €i%(B) and p.= otherwise. Also
p" € Q.,. Let us call such kinds of extensions, trivial extensions. Clearly, p" is
stronger, in the ordering of Q.+, than p,. Let us find some q € Q,,, ¢ Z,,p" and
q = p2.

By taking some trivial extension p of p. we can make $,; = 8. So assume that
already B,, = B. Now let us define q = {(a, p. U p2a) | @ € i7,(B)}. It is enough to
show that ¢ € Q., and then, obviously, q =., p”, p.. So let us check the condition
(2) from the definition of Q,,. Let a limit ordinal a« €il,(8) and B E¢q, =
paU P NOW g, = pi OF Go = P2o. SUPPOSE g = p. (the case g. = p.. is the
same). Then p”"[{a, B) is a (V[Bs]. Q. I B)-generic. But p"[{a, B) = q [ {a, B).
Since for every 1 €i(B), B € p’ and hence, since if g.# p*, then p., is an end
extensionof pl,sop NP =p,, NP =q.NB. O

LEmMA 4.5. For every v <k

() Q. < Q.+, i.e. every maximal antichain of Q, is a maximal antichain of Q..
(i) If G is a generic subset of Q.~, then G N Q, is a generic subset of Q..

PrOOF. Clearly (i) implies (ii). So let us prove (i). Suppose that (p* l[,L <A)is
a maximal antichain in Q.. Let p € Q, for some a <«~. Suppose that p is
incompatible in Q.+ with every p* (i < A). By taking the trivial extensions of p,
we can make a = v and v € i%(B,). Let us consider p| v =a{(r.p.) | i'(B,)}. Then
plv €O, since v €iyB,) implies iB,) 2 i'AB,), for B, EC.,. Also pfv=pin
O.-. Now for some p < A, p* is compatible in Q, withp [ v. Letq € Q,, q. = p*,
p [ v. We assumed that p and q are incompatible in Q.+. So by Lemma 4.4, for
some vy €i%B,)NiiB,), q, is not an end extension of p, or the converse. But
Aup, < Ao and ... =37 <k y =i(7). Hence there is 7 <B,, vy =i.(r). So
y €i%B,) and p, is in p | v, which is impossible. Contradiction.

LEMMA 4.6. Q.- satisfies k *-c.c.
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PROOF. Suppose that T is a maximal antichain in Q.-. Since for every v <« ",
| Q. |=«, we can find u < k", cf u = k, so that for every g € U,., O, there is
te TN U,..Q, compatible with g.

Let us show that then T C U, -, Q.. Suppose otherwise. Then there is some
teT-U,..0Q,. Let t€Q., a=pu. As above, w.lo.g we can assume
wEiYAB). As in Lemma 4.5, then ¢t[u € Q, and t[u =t in the ordering of
Q.. Let us find some inaccessible 8 > B, in C,. Since the cofinal sequence to w,
(. | 7 < k) is in Ao, (. |7 < B) represents it in s,. So in(B)=U.4il(B)
and for 7.> 1, iy (B)D iy, (B). Since Hu b pr = it (K)2 pr, = i, (k). The
cardinality of i.(8,)is | 8. | < B (in V). So for some 7 < B, i..(B) D i (B:). Let us
consider s = {(vy, s,) ] v € i, (B)} where s, =t, for y €i;(B,) and s, = other-
wise. As above s €Q,, and s =] u. Now there is €T N U.-,. Q. which is
compatible with s. But hence it is compatible with ¢ [ u and with £, by Lemma 4.4.

Contradiction.

5. The cardinals are preserved
First we are going to prove the following.

PROPOSITION 5.1.  For any limit ordinal v < «", an ordinal « € A, N C, and
pEQ.la, in the model V[P,.\] there is a (V[P.],Q.|a)-generic set q =
{(r.q.)|T€ila)}sothatq € Q.,q =.pand U (q. N @)= a forevery r € i'(a).

REMARK.  We do not distinguish between a generic subset G C Q, [ «@ and the
set which we obtain from it by taking the union of the second coordinates of its
elements, and also we add to each of the second coordinates its sup.

PrOOF. We shall prove this proposition by induction. Suppose it is proved for
every (i, B) s.t. u is a limit ordinal < v and B€ A, N C,,or u = v and B is less
than a.

Let us show first that the following holds:

LEMMA 5.2. Letv <« be alimitordinal and a € AV N C, (where A, is from
the definition of the (A, ]B < k™). Then for every pEQ, |« there is q =
{r.g.)|7€i%a)}€ Q. N V[P..\] so that ¢ =.p and for every T Eila), a
max g..

REMARK. Note that if « € A, N C,, then for every 7 €Ei'(a), a €A, NC.
Let us prove it by induction on v. If v = u + @, for some limit u, then

A=A NALN - NAL. N
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and

(@)= ilam(@)=ila)U{p+n|n<w)

n<w

If v u + o forany p andcf*v < k, then A, = N {A,,
for some 8 <cf'v and a« € A,, N C,,. In the last case, when cf'v =k, A, =
A{A,, |8 <«k}. Since a €C,, iYa)=U{i’"(a)|5 <a}. Also a €A, NC, for
every 8 < a.

8 <ct'v}.SotEil(a)

ProOF. We shall consider four cases.

Case 1. There is the maximal limit pw < v.

Then v =u +w and since a €EC,, u €il(a)and il{a)=iYa)U{n tn I n<
w}. So if w €i(a) and it is a limit ordinal, then u; € i (a).

Now let p € Q. [a. Then p ={(1,p.) | T €Ei (B} U{{p + 1, pusn) | n <o}

a belongs to A, N C,.. So we can apply the inductive hypothesis to {u, @) and
plu. Let t €Q, N V[B,.,] be as it claims. Let us define

q=tU{{p+n, porn Ulah)|n <o}

Then g € Q, since every limit u; € i'%(a) is equal to u, or belongs to iy(a). In
case B € p,., we have that p {(u, B) is (V[IO’B], Q. I B)-generic. Also for every

TEIUB),BEP,sot. N B =p, NP andhence p[{u,B)=1t1(u,B). Alsog=.p
since tZ,p | .

Case 2. cf""y =R,

Since a € C,, a > cf"v. So all the cofinal sequence to v is contained in i(a).

Let us pick in V[P,] a sequence of limit ordinals ve<p, <-+<p, <---
cofinal in v, from the elements of the old sequence to ». Then

{va

n<ow}Cila), ia)= U il(a) and v €il ().

n<w

Suppose now that p ={(n,p) {7 €IUBNE Q. [ Then B, €C, and so
Bo > cf'v, {va | n <@} CiUB,), i%By) =U,cuil(B,) and v, €i" (B,). Let us
denote p | v. by p.. Then p, €Q, I« and p = U, p..

Since a € A,, we forced on the step a with Nm_.+. So in V[P,.] there is a
sequence (C. | n < w) so that

(@) C. €V and it is a club in & in V[P,].

() C..CC..

(c) For every closed unbounded subset of a, C € V[P,] there is some n so
that C. CC.
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Let us define now a sequence (g, | n < ), . ={(7,q..)| 7 € i/, (B,, )} so that

(i) . €0, lan V[}U)B,,nﬂ],

(i) Ba,.i> Ba. = B

(ii)) B, €EC.NA, NC,

(iv) pn =0, qns

(v) for every 7 €i(B,.), Bo, =maxqn,

(vi) gn+1 1s stronger than some trivial extension of g,

(vil) g. is a (V[ﬁeqn], Q., | B,,)-generic.

Using the inductive assumption and the fact that A, N « is a stationary subset
of a in V (since A,, DA, a €AV andso A,,Na={B<a|A. NB=S5;and
Ss is Wcg-positive} is stationary, hence A, N « is stationary. Since C Ca is a
club, let us take some of its limit point 8 € A,, N a. Then C is a club in B and so
CNS; =CNA,NB#D), we can build such a sequence in V[P,.].
r€ifa)} where ¢ = U{g.

Let now g¢g={.q.) n<w and
TE€iL(B, )} Ufal.

Let us prove that ¢ € Q,, then clearly q =, p. Since i(a) = U i’ () and every
- €Q., it is enough to show that for every n, q[{(vm,a)=qlv. is a
(V[P.], Q., | a)-generic.

The proof is similar to Proposition 3.1. Let D € V[P, ] be a dense subset of
Q., I a. Let us define in V an elementary chain (#, |B < a) of submodels of
(Ve €, a, v) so that

() P, (A, | <™, i, Re, R, from the model .., (v. |7 <cf,), the
names Q. [a and D of Q. [a and D are in .

(ii) Every A, is of cardinality less than a.

(iii) M+, contains all B-sequences of elements of .

(iv) For limit 8

M= U M,
Y<Bg

Since a is an inaccessible cardinal and V= GCH, such a sequence can be
defined.

Let E={B<a |J%B Na =B and B €C,}. Then E is a club in V. Hence for
some m >n, C, CE.

Then v, €i%,(B,.), v« is a limit ordinal and B,, € G, SO Gm | (¥, By, ) =
Gm | vaisa <V[ﬁ’3qm], Q., | B,,.)-generic. Let us prove that g.. | v, is stronger than
some condition in D. It is enough to show that D N Q, | B, belongs to V[f)pqm]
and it is dense in Q,, | B,...

For the simplification let us drop the indexes n and g.. and denote », by v and

B... by B.
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LEmMMA 5.3. For an inaccessible B € E

(1) Mo[Ps]<(Vior[P). €, aw), D

() O.la NMs[Ps]= 0,18, DN M[Ps] € V[P:]) and it is a dense subset of
OV rB‘

PrOOF. (1) First note that My N P, = P and Mz D Pg since My Na =B, B is
an inaccessible and for such B’s, Ps = U,z P,. If SCP.,, SE My and it is a
maximal antichain in P, iff S C M and 4z =S is a maximal antichain in P,,
since P, satisfies a-c.c. Hence Ps is an J,-generic subset of P.. Let .#s[Ps] be
the P,-interpretation of all the names which are in ., i.e., it is {K,sa(a)l ace
Ms}. We can define I inside ;. It will be the same as the forcing Ps in V
restricted to the formulas whose quantifiers are bounded by /. So
/ﬂp[ﬁﬂ]hq:(Kpﬂ(a)) iff for some pE P, in My, plo(a) iff phs o(a) iff
Ve [Pa ]k ©(Ks,(a). But a is really a Ps-name, so K (a)= Ks,(a). Hence
Ms[Ps] < (Vo[ P], €, a, v).

(2) First, Q, | a N Ms[Ps]C Q. | B follows from the definition of Q, | B8 and
since Ms[Ps] C V[Bs].

For the converse inclusion, note that if t C 8, t € V[P,] and it is bounded in B,
then t € My [Ps]. Since for some ¢ <B, Ut =¢ then ¢ is of cardinality N, in
V[P;] and P, satisfies B-c.c. so t € V[ﬁ,,] for some n < B. Hence some of its
names can be coded as an ordinal less than (n")". But (n")" < 8. Hence this
name belongs to M, and so t € M.

The second half of (2) follows now from the first and (1).

0 of Lemma 5.3.
O of Case 2.

Case 3. cf''"y =N,
As in Case 2 we have « € C, so a >cf'y,

ia)y= U i),

r<ctVv<a

il . (@)Di(a)and v, €1, (a) for 7 <cf"a.

Let us pick in V[P,] a cofinal in v continuous sequence of limit ordinals
(v, li < ). Let it be a subsequence of (v, |7 <cf'v). Then {» 'i <wi}C
i), ifa)=Uic, i'(a) and v; €i",, (a). Note that the same is true for any
other ordinal in C..

Let p={rnp)|7€IUBNEQ.la where B, <a and B, €C. W.lo.g.
p € V[P, ]. Since p € V[B,], P, satisfies a-c.c. and | p |"'*! = N,. So p € V[F;]
for some B < a. Now let us take the trivial extension p' of p with 8, = 8. Then p’
satisfies this requirement.
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Let us denote p| v by pi for i <w,. Then p, €Q, [« and p = U.-<w.pf~
5, 1] be the sequence of clubs defined in the beginning

of Case 2.

a € AV s0 (A, ). is stationary in a. Pick 7, € (A, )o N (Co— B,) N C, such that
70N Cy is unbounded and so closed unbounded in 7.

It follows from the definition of P. that P,..=P,*Q,, where Q, is

P*[A, N 7] (see Section 2).

So U O, N C,N(Co—B,)isaclubin 7,in V[P, ]. We shall denote it by Go.

Let {a; | i <N} be the increasing continuous enumeration of G, in V[P, ).
Note that for every limit i <N, GoN a; € V[P,..]. Since it is a countable subset
of a; and the cardinality of & is Ny, in V[P,..]. The forcing P, /P..., does not add
new w-sequences to ordinals of cardinality Ni, since P. does not add reals.

Since ay€ A,,N C,, we can apply the inductive assumption to p, (which
belongs to Q,,[ @) and a,. So there 1s tLE V] a<,+1] N Q.,, to =, po, Max ty. = ag
for every 1 €i" (o) and fo is a (V[P ], Q.,[ ao)-generic. Let t)=t,U p.. Then
t4€ Q. la,. There is 1, € V[P, .,]N Q.,, t; =, ti, maxt, = a,, for 7€ i} (a)),
and 1, is a (V[P, ], O.,] a\)-generic. Let ¢} =t U p..

In such a way we obtain a sequence (¢, | vy <N;) so that for any y <N,

() t, € V[P u]NQ., t, ={{1,t,.)| T €l ()}

(2) maxt,. = a, for 7 €1’ (a,).

3) 4 =.,p,.

4) L=, Upyar

As we saw, there is no problem to build such a sequence on nonlimit stages.

Suppose that {tyr[y'< v) is built and vy is a limit ordinal less than N;. Let
t, ={(nt,.) | T €1} (o)} where t,, = U{t,.|r€e il (ay)and y' < y}U{ay}. t, is
in V[P, ., since the sequence (ayrl v' <) is countable and so belongs to
V[P, .i]. maxt,, = U max,«t,. = a, for every 7 €il(a,).

Ciam. , €0,

Proor. We shall check condition (2) from the main definition. So suppose
that limit 7 €1 (a,) and B €1,.. Since i’ (a,)= U, il Aa,), T €i%(a,) for
some y' <¥.

Subcase 1. B < a,.

Then for some § <y, vs > v, and a; > B. So i’,(a;) D i’ (B). Also 7 € i (a5)
and B € 15, since max 5, = a; > . But t, € Q,,, 50 t; [ {r, B) is a (V[Ps], Q. | B)-
generic and [ (7, B) =1, [{1, B).

Subcase 2. B = a,.
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We shall prove that ¢, [(r,,) is a <V[I°’(,y], Q, | ay)-generic. So suppose
De V[lsay] is a dense subset of Q, [ a,. As in Case 2 we define an elementary
chain {/; I 8 < a,) of submodels of (V,+-+, €, a,, 7), which satisfies (i}-(iv) and
E={6<a,|Ms Na,=6 and § EC,}.

Now @, € G, and it is its limit point. Hence it is also a limit point of
Co—B,- So CyN a, is a closed unbounded subset. Then E N(Cy—B,) is also a
club in a,. By the definition of P*[A, N 7], then U C),(,ﬂ a, intersects with
every closed unbounded subset of a, in V[P, ],s0 U Q,, N EN(C\—B,)#D.
Hence for some p <19, a. belongs to this intersection and 7 € i) (a,).

Now by Lemma 5.3, Q. [ a, N M, [P..]= Q. | @, D N M, [P.,] € V[P.,]and
it is a dense subset of Q. [ a,. Then ¢, [ {7, a.) and so ¢, [{7, @,) contains some
element of D. [] of Subcase 2.

Let now t'={(1,t9 |7 € U,ou, il (a,) = i)} where 7= U {1, |7 €l (a;)
and vy <N} and 7, is from the beginning of the proof of Case 3. Note that for
every 7 €i%1), U tl=17,.

Now let us pick some 7, € (A.)o N (C,— 74) N C., so that 7, N C, is unbounded
in 1.

As above P, =P,*Q. where Q. s P*[A.N1]. Let G,=
M o)N(C - )N C. Let {a; I [ < N;} be the increasing continuous enumera-
tion of G, in V[P, .].

As above we build the sequence (t‘y| v <8;) so that for y <N,

(1) L€ V[Bu ] N Quth={r ti)| 7 €il(al).

(2) maxt), = a) for 1 €il ().

(3) 1y, =,

4) i, Z1,U L.

had

Let us define

tl={('r,t'7> re U i'ﬁy(a'y)=i'i(7.)}

Y<N|

where t1=U{t,.|7 € it (ay) and y <Ni}.

Then for any 7 €i%n), Uti=17.

In the same way let us define 7., t" for every n<w. Let now t“=
{(r, 19| 7 € i'a)}, where t*= U {1} |1 €i)(a ¥ <Niand n <w}U{a}. Note
that U, i (@) =iYa) and U, i} (a})=il(a).

It remains to show that ¢t is in Q..

It is enough to prove the following:

CLAIM.  For every limit u €il(a), t“ [{g, a) is a (Qula, V[P, ))-generic.
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PROOF. The proof of this fact is similar to Subcase 2. Let D € V[P,] be a
dense subset of Q, [ a. Let (4, | 8 <a) and E be as in Subcase 2. Let C, C E.
Then for every m=zn, C,, CC. and {a,-'”l i <N}CC, N7, Hence for every
i <N, by Lemma 5.3,

Q.laNMay[Pn]= Qulal,

D N M.r[P.] € V[P.»] and it is a dense subset of Q, [ al"

Our p €i)a). So for some i <Ny and m = n, p €i’(a"). But t{€ Q,, and
a"€th. Hence '] {m.al is a (V[Pyr], Q. I a)-generic. So 17 (. af) is
stronger than some element of D. Hence t* [ (u, @) satisfies the same.

[0 of Case 3.

Case 4. cf'v =«

PROOF. Let (v, ,[.L < k) be the picked cofinal sequence for v. Then i}(8)=
UM<3iZM(B) and for p < B, v, €i’(B) for every B € C.. Hence by Lemma 4.2,
B € C, for every u < 8.

Let p={np)|7€BNEO. ]a where B, <a and B, (.. Our « is
regular, so for some u < a, I’ (@)D i'(B,). W.lLo.g. letalready i’ (a) D i'(B,).

Let (C, |n < @) € V[P,.\] be as above.

Using the inductive assumption, as in Case 2, we define a sequence (g.
®), 4. ={{7.4w) | 7 €0, (1x)} s0 that

i) 4. €0, [a N V[P,.].

(i) go=0and &, <y < o < a.

(i) w, €C.NA, NC.

(iv) qo., = p.

(v) For every 7 € ii, (tn). sn = MaX Go-.

n <

(vi} gn+ is stronger than some trivial extension of g..

(vii) q. is a (V[P,,), O., | t.)-generic.

Note that A, = A,.-. A, and since « €AY, A, Na is stationary. So for
p<a, A, NaD (A, — )N a is stationary. Also u, € C,. for every n since
tn > fin and p. € C..

Let now q={7q.)
TEI ()} U{al). ]

As above such defined g belongs to V[P,..]. Let us show that ¢ belongs to Q..
So suppose & € i')(a)is a limit ordinal and B € ¢s. We shall prove that g [ (5, 8) is
a (V[Ps), Qs | B)-generic. First note that if 8 <a, then 13B)C il (u.) and
6 €il, (u,), for some n<w So ql(5,B)=q.[(5B). But ¢g.€0,,
6 €iy, (u.) is a limit ordinal and B € gu. since maxq.s = u. > B, hence
g.1¢8,B) is (V[Iu’ﬁ],qa I B)-generic.

n<w and

r€ia) where ¢ =U{q.
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There remains the case 8 = a. The proof is the same as in Claim of Case 3.
O of Case 4.
O of the lemma.

Now let us return to the proposition.

So we have « €A, NC, and p € Q, ] a. Let us assume that p =J. In the
general case only the notations are more complicated.

In V[P,.i]. cfa =cf(a”)=N,. So there is a sequence (B, |n < ) so that:

(1) every B, belongs to V[P,] and it is a one-to-one function from N, into the
set of dense subsets of Q, | a. (Note that /"< = N}")

(2) For every dense subset D € V[B,] of O, | a there are n < w and 7 <N, s0
that B.(7)=D.

As we did in the lemma, let us define in V an elementary chain {4, | B < a)of
submodels of {(V.++, €, a, v) so that

(i) P, (A, ',u < k"), i, Ro, R, from the model .., (v,
O.la, By of Q,la and B, are in .

WEvery My is of cardinality less than a.

(1) Mg, contains all B-sequences of elements of M.

(iv) For limit B, M, = U ,<s M,

Let E,={8 <a lJ%,, Na =B and B € C.}. Let us pick some limit point vy, of
E,, which belongs to (A!")o. There is such an ordinal, since « € A’ = A, and so
(AM)s N a is stationary in a.

On the step y, we forced an w-club U Q,, into AVN vy, Let Gy=
E,n(U Q,). So Gsis a club in y, in V[P,..] and y, became an ordinal of
cofinality N, in this world. Let {a; I I < N;} be the increasing continuous enumera-
tion of Gy in V[P,,..]. As we explained in Case 2 of the lemma, for every limit
i <N, GoNa; € V[P,.1].

M [P, = U (L, [P.] , i <N;}. As in Lemma 5.3 for every inaccessible 8 €
Eo, Bos =a BoN Ms[Ps] € V[Ps] and for every i < Ni, Bos (i) is a dense subset of
O.1B.

So By, (¢§)=U {B()a‘.(g)l i <N} for every £ <N,.

Now let us define in V[P, .] a sequence (g; I i <Nj), so that for every i <N,

() g ={n g |7 Eia)}.

(i) max g, = a; for every v €i’(w).

(iii) ¢: € Q. N V[P..1].

(iv) gi+1 is stronger than some element of B, (i).

V) gierv Z g

Let g0 be any element that satisfies (i)-(iii). It exists by the lemma. Note that
qo € M.,[P.], since qo € Q. | @, which is by Lemma 5.3 Q, | & N M,,[P.,]. Now let

T <cf v), the names
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p be any element of By, (0) stronger than g, (clearly, it exists since Bi,,(0) is
dense in O, [« N M, [P, ]). By Lemma 5.2 there is ¢ which satisfies (i)-(iii) and

Z,p. Let g, be some such q.

So for every non-limit i it is possible to define ¢; in such a way.

Now suppose i is a limit ordinal less than N,. Let us define ¢ =
{1,g.)| 7€)}, where ¢g.=Ul{q.|é<i and 7€i%a)}U{a} for
T € i"%(a;). Let us check that (iii) holds. i.e., ¢ € Q. N V[P, . ]. First note that a:
is in V[P,..] since we used only {a; |§ < i} to build it. And it is a countable
sequence of ordinals less than . So it belongs to V[P, ..]. The proof that ¢, € Q,
is the same as in Lemma 5.2, Cases 2 and 3.

Now let ¢q'={(r.q)|r€ Uik i)}, where qi=U{g.|i<w and
7 €i’a:)}. Note that U, .u, i’%(a:)=i’(ys). The argument similar to those in
Lemma 5.2 shows that g’ € Q,. Also note that ¢ is built inside V[P, ], so it

o

belongs to V[P,.]. Clearly, then ¢°€ Q. | a.

gt

Let us consider now an elementary chain (/I/(é;l B <a) of submodels of
(V.+++, €, a, v) which satisfies (i)-(iv) as above and, in addition, in (i) we include
also some name B; of B; into .

As before, let E, = {8 <« '/%g Na =B and B € C.}. Pick some limit point v,
of E, so that y, € (A")s and y: > yo. Let G, = E, N (U Quyl) and {a| I i <N} be
its increasing continuous enumeration in V[P,.,]. Then

A, = ULt |i <N}
and
MR = UL By i < n )

Now we define (g ’ i < N,) satisfying (i)-(iii) and (v) as above. We only change
a; on e and (iv) will be the following: qi., is stronger than some element of
B, (i). Also let us pick g to be stronger than q". Now, as before, we define q'.
Such g' belongs to Q, [a N V[P, .].

Let us do this construction for every n <. So we obtain the sequence
(q" ln <w). Let g={ng)|r€ia) where ¢ =U{qg'n<ew and
7 € i’(y, )} U{a}. Such defined q € V[P,.,]. By its definition q is stronger than
some element of every D € V[P.], where D is a dense subset of Q, [a. So
g € O, and itis (V[P.], Q. I @)-generic. (q € Q, since for every limit u € il(a),
as in Lemma 4.5, Q, a< Q. [ a. So ¢ [{u, a) is (V[P.], O. | @)-generic.)

For U(¢g. Na)=a, note that U, v, = a, since for every B <a, Ds =
{pEQ.la|3reiyB,)B = U p.}isadense subset of Q, [ . (We can add this 8
or some ordinal Z 3 to p. for nonlimit 7.) O of Proposition 5.1.
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PROPOSITION 5.4. For every limit v <x"* and an ordinal « € A, N C, the
forcing Q. 1« over V[P, does not add new functions on N, into V[P.).

PROOF  Suppose f € V[P.] is a name of such a function. Let us define
Bu(i)={q € Q.1 |3a € V[P.]q o fi)=a} for i<N. Then for every
i <N, By{i)is a dense subset of Q. {a. As in Proposition 5.1, let us build
q" € Q. ! a. But then already ¢" knows every value of f,i.e. 9" o, f € VIP.]. O

REMARK. We need the assumption « € A, N C, for a limit », since otherwise,
forsome p € i(a), A, N a« may be nonstationary and then O, [ & collapses N..

Let N=V*/9 and j: V— N be the elementary embedding.

PROPOSITION 5.5. For every limit v<x*, in N[P..] there is a
(V[P.], Qj, | k)-generic set q so that ¢ € Q.. q={rq.)|TE€]"(v)} and
U (g. N )=« for every 7 € j"(v).

Proor. This proposition is the translation of Proposition 5.1 to N. Note only
that j'(v) =i y(x), kK Ej(A, NC.)=A;,,N Cyy (since A, NC, €U and U 1s
normal) and the (V[P.]; Qi) | k) and the (N[P,}, Q.. k) genericity are the
same, since N is closed under k-sequences of its elements. a

LEMMA 5.6. Forlimitv<k" and a € A, N C, ora =k, Q. | a is isomorphic

to Ojlu)la~

RemarRk. (1) Since V[B.]N*N[P.]C N[B.] this isomorphism is in N[P.].
(2) O.1x=Q.

PrROOF. let g€ Q.la, g ={{ng.)|TEil(B:)} where B, <a =«. Let us
define ¢(q) to be {(j(1),q.)|7 €iUB} Then @(q)={rq.) |7 Eiju (B}
where Gy = q.. Note that i%uB,) = J(iU8,) = {i(r)| 7 € B} since B, <x.
Since N[P.]2 V[P.]N*N[P.}, ¢(q) € N[P.]. By induction on v it is easy to
check that ¢(q) € Q;,| a. 0

PROPOSITION 5.7. For every limit v <" in N[P,.\] there is a (V{P.], Q.)-
generic set q so that ¢ = {(7, q.)
A, for every T <w.

7 < v}, and q. is an w-closed unbounded subset of

ProoOF. It follows from Proposition 5.6 and Lemma 5.7. -

For q as in Propostion 5.8, let us define ¢(q) = {(j(7),q. U {«x} | T < v}. Then
@(q) € Qjuy N N[P,1] and it is a (V[B,], Qi) | k)-generic.
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6. The precipitous ideal

This section is close to those of [7]. The proof of precipitousness is based on
the ideas from [7]. If » < «~, then for P, 2 P, a V-generic subset of Py.,, and
for ¢ € N[P..,] which is a {V[B.], Q.)-generic, let us pick some Gj,), so that it is
a generic subset of Qy., and ¢(q) € Gj.). Then the elementary embedding

j: V=N
can be extended to elementary embeddings
j*: V[P]— N[Py)
and
i**: V[P q]= NP, G
as follows:

J*(Kp (@)= Ks,,(j(g))  for g a P.-name.

Also j**(Kipo(8)) = Kp,, 6,0 (@) for g a (P., Q.)-name.

For v = k" we shall do as in [7]. Let us define a subordering Q* of j*(Q.+) in
V[P,)). For q €j*(Q.) let C,={q'€ O.+|j*(q¢")=q}. Note that j*[ Q.-
agrees with the isomorphism ¢ from Lemma 5.7 since j*[« =id and j*[0n =
jl0n. Now Q*={q €j*(Q.)| for some v<«k’, C,CQ, and C, is a
(V[P.]. O.)-generic}.

Then let C* be a (V[P,,,]. O*)-generic and C ={q € Q.-|j*(q) € C*}. Asin
[7] C* is a (N[P,)), j*(Q.-))-generic and C is a (V[P,], Q.+)-generic. Also j
extends to j**: V[P,, C]— N[Py., C*].

Following [7], let us define I, for v <«*, as follows: For x € V[P,, C1v],
x €1, iff there are p € P, and q € C v,

p ks, (for every (V[B.], Qi | k)-generic q' with q9'2j(q), q' o, KEJj(x)),
where x, g are names of x and q.

Let I=U, L.

LeEmMMA 6.1. [Tis the ideal of w-nonstationary subsets of N, (i.e., the sets whose
complement are w-closed unbounded subsets of N,).

ProoF. First let us show that every w-nonstationary set a belongs to I Q.+
satisfies x'-c.c. so for some v <k", a € V[P.,C|v] and there is b€
V[ﬁk, Clk]st.bNa=Cand b is an w-club in V[Ii, C | v]. Notice that since
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Q.- does not change cofinalities b remains w-closed unbounded in V{P,, C]. Let
(p.q) € P, = C force that b contains an w-club. Then, since

@“‘p]t‘)*,(o_‘ﬂ(cf IE = ”0 and b = ](b) N Iz),

p ks, (forevery ¢’ a(V[P.], Q.| «)-generic with ¢’ = i(9)q' ko, & € j(b)).

Now let us show the converse, i.e., for every a €I, b = x — a contains an
w-club. Suppose that a € I, for some v < k", i.e., thereis a (p,q) € P% + C, such
that p IF;p, (forevery q’ a <V[I°’K], Qjw | k)-generic with q¢" = j(q) o,k €j(b)).
It is a statement in N. So, if

R =
{a <« fp I, (forevery " a(V[P.], Q. [ a)-generic with ' = qq' ko, a € b)},

then R belongs to U. Note that, since P. satisfies x-c.c., for some o large
enough g € Q, | a. Let us assume that every element of R is bigger than this a.
Now let us consider for every y < «* the y-th coordinate of C, i.e., let

t, = Ul{q, | forsome g € C (v, 4,) € q}.

Let t ={(y, ty}l y<v+w+1}. Then t,., is an w-closed unbounded subset of
A, ... By (2) of the main definition for every a € 1.,

tHy+wa)={{nt.Na)|7EilL(a)}

is a (V[P.], Q.+ | a)-generic. Lemma 4.4 implies ¢ [{(v,a) is a (V[B.], Q. | a)-
generic, since v € i, (a)=il(a)U{r+n | n € o}. Now foreverya €¢,., N R,
t](v,a) is stronger than our ¢q. Hence t[(y,a)lto a €b. But t[{(y,a)E C.
Hence « €b.So b D ... N R. R € U, hence one of its subsets R, appears in the
enumeration (A, |v <«k") on some stage §, i.e. R,=A;. But then t; is an
w-closed unbounded subset of R. So £,.. N s is an w-closed unbounded subset
of b. 0

LemMa 6.2. I is a precipitous ideal on N, in V[P., C).

See [7] for the proof.

Part II. The Closed Unbounded Filter Over N,

In this part we prove the following:

THEOREM 1. “ZFC + there is a normal measure concentrating on measurable
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cardinals™ is consistent iff “ZFC +the closed unbounded filter on N, is
precipitous’’.

Let us first prove the implication from left to right. We are starting from a
model of ZFC + GCH with a measurable cardinal « and two normal ultrafilters
Uy, U, on it, so that U, belongs to the ultrapower N, = V*/%U,. Let B € U, — U,
be a subset of {@ <« Ia is measurable}. Pick for every « € B a normal
ultrafilter 4, so that the function f(«a) = %, represents %, in N,. Then X € U,
iff {¢ €B IXD a €U, U. Wlo.g. suppose that for every « EB, BN
a AU,

Let us explain the idea. For X in 4, and Y in %,, we would like to shoot a
club through X U Y. If we do it straight, then cardinals are collapsed. So we shall
do some preparation. It goes as in Theorem I, only instead of the diamond we
use the sequence of ultrafilters (U, |« € B). After this is done, we can shoot
clubs without collapsing any cardinals. The kind of iteration that we shall use is
as in Theorem I. The ultrafilter % will be used to show that the ideal

NS,, N{a <N, I cf o =N,} is precipitous for i =0,1.

1. The preparation forcing

As in part I we define a revised countable support iteration Q = (P, Q. | i<
k), | Pi| =N If i is not a strongly inaccessible cardinal, then Q; is the Levy
collapse of 2" to 8, by countable conditions. If i is a strongly inaccessible and i
does not belong to B (B is defined above), then Q; =Nmy,.,. For i €B,
Q. = P*{:}, where P*{} will be the set of all pairs (¢, A) so that (1) c is an
w-closed subset of i, (2) for every limit point 8 of ¢, ¢ N B intersects with every
closed unbounded subset of B, which belongs to V[Ps]; 3) A € Y.

The ordering on P*{4} is defined as follows: {(ci, A1) =(c., As) if ¢; is an
end-extension of ¢,, A\C A, and ¢, — ¢, C A,.

Let P. = R lim Q.

The next lemma is the analog of Lemma 1.2.2. See [5] for the proof.

Lemma 1.1. P*{U} satisfies the strong l-condition for a set | of monotone
families so that U € 1.

LeEmMA 1.2. If i € B, then every function f € V[P...] from o into V[P)]
belongs to V[P,].

ProOF. The proof is as that of Lemma 2.3, only we shall consider
elementary submodels A, of (Vi+, &, P, %,f} s.t. | Mg | < i. Then on a club C,
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M Ni=p Let Ay=({A €My |A €U}, then A, €U and AA, = A E U
Let us pick @ € A N C, a a limit point of C. Then for every A € .#, N % for
some B<a, BEC, ADA, since M, =, M. Hence a €A. Now we
continue as in Lemma 2.3. O

Also note that P*{qL} satisfies i"-c.c. since (c, A;) and {c, A,) are always
compatible.

2. The main forcing

Following 1.4 let us fix enumerations by nonlimit ordinals (A, ., l v <k')of
{A €| A Cx— B and every a € A is an inaccessible} and (B,., | v < k) of
{B'€ U, |B’ C B}. Let us now define A, and B, for a limit v < k" First we shall
do it for v<«k Let A,=(V,,A, and B, =,..B. Put BV"=
{BEB.|A, NBEU} (it will be the analog of (A, )s) and A=
{a €A, |B"Na is a stationary subset of a}. Let B, =BP=,
{BEBY|APNBEU) and A, =AP=4{a €EAV|BPNa is a stationary
subset of a}.

Now for v Z k, as in 1.4 we define A, and B., using (v, |7 <cf ).

For (A,, B,) let us define, as above, (A", B"”) and (A®, B®). Put A, = A®
and B, = BY.

We shall use the notation of part I.

MaN DerINITION 11 For v < k¥ we define in V[P, ] by induction the forcing
notion Q, and the ordering =, on it as follows:

Anelement g € Q, is a sequence {{a, g.) | @ € i'(B,)}, where B, € C, so that

(1) for @ €i%(B,), q. is a closed subset of A, U B,;

(2) as in part I.

As in part I we define {Q.+,=). All the Lemmas 4.4-4.6 hold in our case.

The following analog of Proposition 5.1 holds,

PROPOSITION 2.1.  For any limit ordinal v < k™ an ordinal « € (A, UB,)N C,
and pE€Q,la, in the model V[P,.;] there is a (V[P.], 0, a)-generic set
q={(r,q.)|7€iYa)} so that q€Q,, q.Zp and U(g.Na)=a for every
TEiYa).

PROOF. We prove this proposition by induction on (v, a). Lemma 5.2 holds in
our case. Only in Case 3 of this lemma shall we make a few changes. For
a €AY, BPNa is stationary. So we can pick 7, € B’ N(C, — 7.-1)N C, s.t.
7, N C, is unbounded in 7,. The forcing on the stage 7, is P*{U.}.
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Let T={(c,A) | ¢ CN2, A €9, } be a generic subset of P*{, }. Let us define
T.=U{c lBA(c,A) € T). Then T; is a closed unbounded in 7, and from some
place y, T\~ y CA,, since A, N7, €EU,. Let G, =(T,—y)N(C, —7.)N C..
The continuation is as in Lemma 5.2, only in the definition of ¢" we shall add {r.}
to every t; and check that such defined ¢* € Q.. Note that since 7, € B\, 7, €B,
for every u €i;(7.). To show this, it is enough to prove the following:

CLAM. " [{, ) is (V[P. ], Q. | 7.)-generic for every limit u € (7).

For the proof note that G, intersects every closed unbounded subset of 7, in
V[B, ]. So the arguments of part I work.

Now let us return to the proposition. If @ € A,, then in V[P,.\], cfa =
cf(a”)=No. We define (M;|B < a), as in Proposition 5.1, but into M; we
include in addition (B, , i <) and also for every y € B,, 9,. We are picking a
limit point y, of E, — y.-; which belongs to B,. It exists since « € A, = A and
s0 B, N a is stationary in . On step 7y, we forced with P*{9L, }and A’ N y, €
a,. Let T E V[P, be its generic subset and T: = U {¢ IHA(c,A)E a,.}.
Then T is a closed unbounded subset of vy, and from some place y, AP D
T,—y.Let G, = E, N(T,—v). We add {,} to ¢ from Proposition 5.1, i.e. our
q- is q- from Proposition 5.1 union with {y,}. Such q" € Q, and we continue as
in Proposition 5.1.

Now suppose a € B,. Then we force with P*{aL.}. In V[P,.],|a|=N =cfa
and (a")" =N,. If we do one more step then (a )" also becomes of cardinality
Ni. So in V[Puﬂ] there is an enumeration (D; | i <N,) of all dense subsets of
Q. a in V[P,]. Note that every countable subsequence of this sequence is in
V[B.]. It follows from Lemma 1.2. Let us define as above the elementary chain
(MH B < a) of submodels of (V,++, €, a, v), for every i <N,. But into #, we
include, instead of a name of B, some P,-name of D,

Let E={B<a|MsNa=p and BEC). Note that every E, €V, but
{E; l i <N} and probably some of its countable subsets does not. As in Lemma
5.3 for every inaccessible B EE, (i <), Dig =a D N Ms[Bs] € V[Ps], it is a
dense subset of Q, 1B and Q, | B = Q. a N Ms[Ps].

Now a € B,, hence AP Na € U,. Let T be a generic subset of P*{q,} and
T.= U{c |3A(C,A)E T}. From some place y, T,—y C AY. Let {a: |i<N1}
be its increasing continuous enumeration.

Let us define in V[P,.] a sequence (g; I i <N,), so that for every i <N,

(i) g ={(nq) |7 EiYa)},

(ii) max g, = o; for every 7 € il(a),
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(iti) ¢ € Q, N V[P..],

(iV) Givi v = G,

(v) let & be the first 8 =i so that for every j <i (a;. € Es) or (o1 € Es and
5 # 8).

If ai.1 € E;, then g+, is stronger than some element of Ds.

Note that to define (g; Ij <i) we need only {a; lj <i)and (E;Na; Ij <i).
Both sequences belong to V[P,..], since

Ia’_ lv[P"i”] = |(a :)V[Pa,.] V[Palﬂl = Nl

and P, /P,., does not add reals.

So (g |j <i)€ V[B,] I i is a limit ordinal, then let g, = {(r, g.,)| 7 € i%(e)}
where g. = U {g;. lj <iand 7 €ile;)} U {a:}. Since {e; lj < i} intersects every
closed unbounded subset of a; in V[P,], ¢ € Q, (see the claim in Case 3,
Lemma 5.2). If i =j+1, then if a;,; € Es, let gi.i be any element satisfying
(i)(iv), otherwise a,.. € E;, and so Ds, N M., [P...,] = Dse.,, € V[P.,.,] and it is
a dense subset of Q, | &.... Let us pick some p =,¢; from this set and by the
analog of Lemma 5.2 find ¢:.1 2, p which satisfies (i)-(iii).
r€ia)}, where ¢ =Ul{g.|r€ia)}U{a}, for
€ i’(a). It remains to show that such defined q belongs to Q, N V[P..-] and it
is a (V[P,], Q. a)-generic. The first half holds since we defined g inside
V[P..,] and since {a; | i <N} intersects every closed unbounded subset of « in
V[P.]. Let us prove the second half. So let D be a dense subset of Q, [« in
V[P.]. Then D is some D; from the list of such subsets. It is enbugh to show that
for some i <N, § =6 and a:., € E;. But it must hold since E; € V and it is
closed unbounded in «. Hence from some place js every a; with i 2 j; belongs to
Es. The same is true for every £ <8. So in V[P,.,] we have the countable
sequence {J; | £ = 8). Since the cofinality of « is N, there is j <N, so that ; = «,
for every £ = 8. Now using (v) enough times, we obtain that forsome i Zj,6: = 6
and since ;. € Es, g;+1 will be stronger than some element of Ds. ]

Let now q={g.

As in part I the following holds:

PROPOSITION 2.2. For every limit v < k" and an ordinal @ €(A, UB,)N C,
the forcing Q, | a over V[P,] does not add new functions on N, into V[P.].

Let N; = V*/%, and j, : V— N; be the elementary embedding, for i =0, 1.
Note that P.., has different meanings in N, and N, since in N, P.., is
PK *Nm,’(,p but in Nl, PK+1 iS PK *P*{%U}

PROPOSITION 2.3. For every limit v <k " and i =0,1 in N;[P....;] there is a
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(VIP.], Qi k)-generic set qi so that ¢ € Qy.,, q =7, q,-,)lrEj’,-’(v)} and
U (g N k)=« for every T € ji(v).

See part I for the proof. Note only that « € jo(A, N C.)and k € ji(B, N C,).

LemMmA 2.4. Forevery limitv<k',i=0,1anda €(A, UB,)NC,ora =k,
Q. | a is isomorphic to Q[ a and this isomorphism is in N;.

See Lemma 5.6. We define ¢; (i =0,1) as in this lemma.

PROPOSITION 2.5. For every limit v < «* and i =0,1 in N;[P..,..] there is a
(V[P.], Q.)-generic set g; so that q; ={(r,q.)| T < v}, g is a closed unbounded
subset of A, U B,, all its points of cofinality N, are in A, and of cofinality N, in B..

The proof follows from Proposition 2.3 and Lemma 2.4.

For g as in the proposition let us define ¢;(q:) = {(ji(7), g U{K})IT < v}
Then @i (q;) (= Oj&(‘,) N Ni[ﬁ,(+]4-i] and lt iS a <V[ﬁ~], Oj‘-(p) r K)-generic.

3. NS, is a precipitous ideal

Let us denote by NSy; the ideal of N;-nonstationary subsets of N, (i.e. the sets
whose complement contains an N,-closed unbounded set), where i =0, 1.

A set x CN; is N;-stationary if it intersects every N;-closed set. A set x C N is
stationary iff for some i €2, x N{a < Nzlcfa = N;} is N;-stationary. So NSy, is
precipitous iff both NSx¢ and NSg: are precipitous.

Let us prove that @I, .o - (NSy, is precipitous). Otherwise, some (p,q) €
P. * Q.- for some i ={0, 1} force that NSy; is not precipitous.

Let us show that it is impossible if i = 1; the case i =0 is the same.

As in [7] we pick a generic subset P, x C of P.* Q. and P,,*C* of
Py * Qjcry, sO that (p,q) € P, * C. The elementary embedding j; extends to
j*: V[P, C]= N[Py, C*]

We define in V[P,, C] ideals I, for » <«*, as follows:

Forx € V[B,Clv],x €L ifftthereare t EP, andr € C| v, ¢ e, .., (for every
(V[P.], Oy ] )-generic g’ with q' = ji(r), q’ll-o,]“,)kgjl(gc)), where x, r are
names of x and r.

Let I=U, L.

LemmA 3.1. I is the ideal of Ni-nonstationary subsets of N..

See part I, Lemma 6.1 for the proof. Note that ¢,.,, (from this lemma) will be a
closed unbounded subset of N, and since R € U;, on some stage 8 we shoot a
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club £ through R N B U A, Then BN R N will be an Ny-club, since every
ordinal in A, is of cofinality No in V[P, C].

Now by [7] I is a precipitous ideal on N, in V[P,, C]. But we proved that
I =NSx. Contradiction. So @l .o, (NSy, is precipitous).

4. The strength of NS,, is precipitous

We would like to show that if NS, is precipitous, then there is an inner model
with a measurable cardinal of order 2 (i.e., measurable with a normal measure on
measurable cardinals).

Let us prove a little more general statement:

PROPOSITION 4.1. If the ideal NS of R,-nonstationary sets is precipitous and
there is also some normal precipitous ideal I on N, s.t. {a <N, , cfa =N} E I then
there is an inner model with a measurable cardinal of order 2.

ProoOF. Let us force with I-positive sets. Let G be a generic ultrafilter,
j:V-—>M; the elementary embedding and Mg is the transitive collapse of
VNn*:V/IG.

LemMa 4.2. (i) For every a <N, ja)=a.

(i) j(N2)>N..

(iii) [id}e = N,, where id(a)=a for a <«k.

(iv) cfMe(R))=N,.

(v) For every A CN;, A €V implies A € M.

(vi) If A is an w-closed subset of N, in V then A is such also in M.

PrOOF. See [6] for (i)(iii). (iv) holds since {@ <N, |cfa =N} € G. For (v)
note that the function « — A N a represents A in M. (vi) holds since A is an
w-closed subset of N, iff for every o <N,, if A Na is unbounded in a and
cf o =Ny, then @ € A. Also for @ <N, cfVa = cfMeoa. O of the lemma.

Suppose that there is no inner model with a measurable of order 2. We shall
use Mitchell’s Core Model for sequences of measures, see [11].

Our assumption implies that there is a sequence %, so that any elementary
embedding i : K(¥)— M, with M a transitive class, is an iterated ultrapower of
the core model K(%). Then i | K(%): K(¥)— K(%')is an iterated ultrapower
of K(%) and K(%') is the core model for M. By our assumption 8, cannot be
measurable in K(%). Let C be the filter of w-closed unbounded subsets of Ry in
M.

CiaM. CNK(%F') = (the filter of w-closed unbounded subsets of N, in
VYN K(F)=F(N,,0).
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Proor. First note that (the filter of w-clubs in V)N K(%) = %(KR5,0). Since
NSk is precipitous and if we force with its positive sets, then we obtain a
nontrivial elementary embedding j : K(%)— N with critical point 8,". So it must
be an iterated ultrapower of K(%) using some ultrafilter on 8. But we assumed
that there is only one such ultrafilter F(N,,0). So every one of its elements
belongs to every generic subset of NSx.. Hence every A € F(NJ,0) contains
some w-closed unbounded subset of N, in V.

Now the statement of the claim follows from Lemma 4.2.

We are ready now to complete the proof. The filter C is a countably complete
filter in Mg, hence the ultrapower

K(F)NUK(F)F (N, 0)

is well founded. So in M; we can define an elementary embedding
j: K(¥')— M with a critical point 8. So K(%')E=N; is a measurable cardinal.
Contradiction. O

Now it is natural to ask what happens if we replace the ideal NSy by the ideal
NSx! and the ideal I by the ideal s.t. {a <N, | cf a =N} belongs to it. Does this
assumption imply a measurable of order 1? The answer is no.

PROPOSITION 4.3.  If there is a measurable cardinal, then there is a generic
extension so that NS\ is precipitous and there is a normal precipitous I over N, s.t.
{a <&3'Cfa =N}EL

Let us only describe the forcing notion and explain how it works.

We start with some measurable « and two different normal ultrafilters %, and
9, on it. It is possible to get such a model from the inner model of measurability,
see [9]. Let A and B be some disjoint subsets of {a < k | a is an inaccessible} so
that A € 9, and B € 9. First we define a revised countable support iteration
Q =(P,Q:|i<«).If i is not in A, then O, is the Levy collapse of 2% to N, by
countable conditions. If i € A then let Q; = Nmy,«, (see I for the definition). Let
P. = R lim Q. Then P, does not add reals and for an inaccessible i, P, satisfies
i-c.c. In V[P,], % generates a pricipitous filter and it is concentrated on the set
{a <N|cfa =8}, for i =0,1. Now as in [7] let us shoot w,-clubs through %,
and the filters generated by such shooting. In the last model U, also can be
extended to a precipitous filter. The point is that if jo: V— Ny= V*/U, and
j&: V[P~ No[Pyu), then in No[P,.] both « and k* are of cofinality w. It gives
the possibility (see I and II) to find a V[P, ]-generic subset of the forcing for
shooting w;-clubs inside N[P,.].
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Added in proof. Recently M. Foreman, M. Magidor, S. Shelah and the author
using different methods constructed models with NS, precipitous for x > R.. On
the other hand T. Jech [15] obtained results on the consistency strength of “NS,
precipitous”. But still the gap remains between the initial assumptions used in
the models with NS, precipitous and the bounds of [15].
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